Complète la solution de ces deux exercices qui en utilisant un raisonnement par récurrence.
La première question est en fait un cas particulier de l'inégalité de Bernoulli : "montrer que 3n ≥ (1+2n) pour tout n∈ℕ."
Dans la deuxième question, on montrera par récurrence que 1×1!+2×2!+...+(n-1)×(n-1)!=n!-1 pour tout n≥2